All Essential Vector Algebra Formulas PDF [100% Free]

Welcome to our comprehensive guide on vector algebra formulas! Whether you’re a student, educator, or just curious about vectors, this PDF compilation contains 100% free essential formulas to help you master vector concepts.

Physical Quantity: Property of a material or system that we can measure using numbers. These measurements have two important components:

  1. Magnitude: This represents the size or amount of the property.
  2. Unit: The unit gives meaning to the numerical value and allows us to compare and communicate data effectively.

There are mainly two type of physical quantity:

  • Scalar Quantity: completely defined by only Magnitude.
  • Vector Quantity: defined by Magnitude and Direction.

Vectors Representation/Notation

Vector Quantity has both Magnitude and Direction and must be follow vector algebra.

\vec{A} = A\hat{A}

where A = magnitude of \vec{A} and \hat{A} = direction (unit vector)

Comparison between Scalar and Vector Quantity

Scalar QuantityVector Quantity
Defined by only Magnitude Magnitude + Direction
Follow Normal Algebraic RulesFollow Vector Algebraic Rules
Scalar quantities are added, subtracted, or divided by AlgebraicallyVector quantities are added and subtracted Geometrically
Examples: Length, Distance, Speed, Mass, Volume, Time, Time, Temperature, Work, Energy, Power, Electric Current, Charge, Potential, Flux, etc.Examples: Position, Displacement, Velocity, Weight, Acceleration, Electric Field, Surface Area, Force, Torque, etc.
comparison between Scalar and Vector Quantity
electric current is scalar quantity

Physical Quantities having different values in different direction known as Tensor.

Examples: Moment of inertia, Refractive Index, Density Stress and Stain, etc.

Key Point:

Types of Vectors

Sr.No.Vector TypeDefinition
1.Equal Vectors
\vec{A}=\vec{B}
Magnitudes A=B & Direction \hat{A}=\hat{B}
2.Opposite Vectors
\vec{A}=-\vec{B}
Two vectors \vec{A} & \vec{B} are said to be opposite vectors if thier magnitudes are same but direction is opposite.
3.Position Vector\vec{r}=x\hat{i}+y\hat{j}+z\hat{k}
4.Displacement Vector\vec{d}=\vec{r_2}-\vec{r_1}
5.Unit Vector\hat{A}=\frac{\vec{A}}{A}
Magnitude: Unit (1), Direction:
6.Orthogonal Unit VectorsThe unit vector along x-axis (\hat{i}), y-axis(\hat{j}) & z-axis (\hat{k}) called orthogonal vectors. and
\hat{i}\perp\hat{j}\perp\hat{k}
7.Zero / Null Vector (\vec{0})Magnitude: Zero (0)
Direction: Arbitrary
8.Collinear VectorsTwo Parallel or Antiparallel vectors are called colinear vectors. \vec{A}=\pm\lambda\vec{B}
9.Coplanar VectorsVectors having same Plane or Parallel Plane are called coplanar. If \vec{A}, \vec{B} and \vec{C} are coplanar then,
V=\vec{A}.[\vec{B}\times\vec{C}]=0
10. Polar Vector These vectors have defined initial point. Examples: displacement, force, position, velocity, linear momentum..etc.
11.Axial VectorThese vectors always along an axis. Examples: angular momentum, angular velocity, torque, etc.

Addition of Vectors

  • Triangle Law of vector Addition: If two vectors A and B are represented as two sides of a triangle taken in order, then the third side of the triangle represents the resultant vector R: \vec{R}=\vec{A}+\vec{B}
  • Parallelogram law of vector addition: If two vectors A and B represented as adjacent sides of a parallelogram, then the diagonal of the parallelogram represents the resultant vector R: \vec{R}=\vec{A}+\vec{B}
vector addition

Magnitude of the Resultant Vector: R=\vec{R}= |\vec{A}+\vec{B}|=\sqrt{A^2 + B^2+2ABcos\theta}

Direction of Resultant Vector: tan\alpha=\frac{Bsin\theta}{A+Bcos\theta}

Case (1): If \vec{A} & \vec{B} are parallel i.e. \theta =0° then,
|\vec{R}|= A+B (maximum resultant)
Case (2): If \vec{A} & \vec{B} are Perpendicular i.e. \theta =90° then,
|\vec{R}|=\sqrt{ A^2+B^2}
Case (3): If \vec{A} & \vec{B} are Anti-parallel i.e. \theta =180° then,
R=A\sim B (minimum resultant)
Special Cases to related vector addition

Subtraction of vectors

Magnitude of the Resultant Vector: R=\vec{R}= |\vec{A}-\vec{B}|=\sqrt{A^2 + B^2-2ABcos\theta}

Direction of Resultant Vector: tan\alpha_2=\frac{Bsin\theta}{A-Bcos\theta}

Case (1): If \vec{A} & \vec{B} are parallel i.e. \theta =0° then,
|\vec{R}|= A\sim B (minimum resultant)
Case (2): If \vec{A} & \vec{B} are Perpendicular i.e. \theta =90° then,
|\vec{R}|=\sqrt{ A^2+B^2}
Case (3): If \vec{A} & \vec{B} are Anti-parallel i.e. \theta =180° then,
R=A+ B (maximum resultant)
Special Cases to related vector subtraction

Formulas of Scalar Product of Two Vectors

If \vec{A} and \vec{B} having angle \theta, then their scalar product is defined as:

Scalar Product of two vectors

\vec{A}.\vec{B}=ABcos\theta

\theta=cos^{-1}[\frac{\vec{A}.\vec{B}}{AB}]

In terms of components, if \vec{A}=A_x\hat{i}+A_y\hat{j}+A_z\hat{k} and \vec{B}=B_x\hat{i}+B_y\hat{j}+B_z\hat{k}

\vec{A}.\vec{B}=A_x\hat{i}+A_y\hat{j}+A_z\hat{k}.\vec{B}=B_x\hat{i}+B_y\hat{j}+B_z\hat{k}=[A_xB_x+A_yB_y+A_zB_z]

Case (1): If \vec{A} & \vec{B} are parallel i.e. \theta =0° then,
\vec{A}.\vec{B})_max= A.B
Case (2): If \vec{A} & \vec{B} are Perpendicular (orthogonal) i.e. \theta =90° then,
\vec{A}.\vec{B})_min= 0
Special Cases to related dot product of two vector

Scalar Product Properties

  • It is always a scalar.
  • If \theta <90^o (acute) then dot product always be positive.
  • If 90^o<\theta <180^o (obtuse) then dot product always be negative.
  • \vec{A}.\vec{B}=\vec{B}.\vec{A} i.e. it is commutative.
  • \vec{A}.(\vec{B}+\vec{C})=\vec{A}.\vec{B}+\vec{A}.\vec{C} i.e. it is distributive.
  • The scalar product of a vector by itself is termed as self dot product and is given by, (\vec{A})^2=\vec{A}.\vec{B}=AAcos\theta=A^2 i.e. A=\sqrt{\vec{A}.\vec{A}}
  • The dot product of same orthogonal unit vectors : \hat{i}.\hat{i}=\hat{j}.\hat{j}=\hat{k}.\hat{k}=1
  • The dot product of orthogonal unit vectors : \hat{i}.\hat{j}=\hat{j}.\hat{k}=\hat{k}.\hat{i}=0

Examples of Scalar Product

  • Work : w =\vec{F}.\vec{d}=Fdcos\theta
  • Energy : U_E=-\vec{p}.\vec{E} & U_B=-\vec{M}.\vec{B}
  • Power : P=\vec{F}.\vec{v}
  • Magnetic Flux : d\Phi=\vec{B}.d\vec{s}

Formulas of Vector Product of Two Vectors

\vec{A}\times\vec{B}=ABsin\theta\hat{n}

\theta=cos^{-1}[\frac{\vec{A}\times\vec{B}}{AB}]

In terms of components: if \vec{A}=A_x\hat{i}+A_y\hat{j}+A_z\hat{k} and \vec{B}=B_x\hat{i}+B_y\hat{j}+B_z\hat{k}

\vec{A}\times\vec{B}=\begin{vmatrix} \hat{i} & \hat{j} & \hat{k}\\A_x & A_y & A_z\\B_x & B_y & B_z\end{vmatrix}

= \hat{i}(A_y B_z - A_z B_y)+\hat{j}(A_z B_x - A_x B_z)+\hat{k}(A_x B_y - A_y B_x)

Case (1): If \vec{A} & \vec{B} are parallel i.e. \theta =0° or antiparallel i.e. \theta=180° then,
[\vec{A}\times\vec{B}]_min= A0°
Case (2): If \vec{A} & \vec{B} are Perpendicular (orthogonal) i.e. \theta =90° then,
\vec{A}\times\vec{B})_max=AB\hat{n}
Special Cases to related dot product of two vector
Vector Product of Two Vectors

Vector Product Properties

  • It is always a vector.
  • \vec{A}\times\vec{B}=-\vec{B}\times\vec{A} i.e. Vector product of two vectors is not commutative.
  • \vec{A}\times(\vec{B}+\vec{C}=\vec{A}\times\vec{B}+\vec{A}\times\vec{C} i.e. The vector product is distributive when the order of the vectors is strictly maintained.
  • The self cross product, i.e., product of a vector by itself vanishes, i.e., is null vector \vec{A}\times\vec{A}=AAsin0°\hat{n}=\vec{0}
  • The dot product of same orthogonal unit vectors : \hat{i}\times\hat{i}=\hat{j}\times\hat{j}=\hat{k}\times\hat{k}=0
  • The dot product of orthogonal unit vectors : \hat{i}\times\hat{j}=\hat{k}, \hat{j}\times\hat{k}=\hat{i}, \hat{k}\times\hat{i}=\hat{j}

Examples of Cross products

  • \vec{\tau}=\vec{r}\times\vec{F}
  • \vec{v} =\vec{\omega}\times\vec{r}
  • \vec{L}=\vec{r}\times\vec{p}

Comparison between Scalar and Vector products

PropertiesScalar ProductVector Product
Formula\vec{A}.\vec{B}=ABcos\theta\vec{A}\times\vec{B}=ABsin\theta\hat{n}
Commutative \vec{A}.\vec{B}=\vec{B}.\vec{A} ⇒ ✅\vec{A}\times\vec{B}=-\vec{B}\times\vec{A} ⇒ ❌
Distributive\vec{A}.(\vec{B}+\vec{C})=\vec{A}.\vec{B}+\vec{A}.\vec{C}\vec{A}\times(\vec{B}+\vec{C}=\vec{A}\times\vec{B}+\vec{A}\times\vec{C}

Vector Algebra Formulas PDF [100% Free]

Sharing is Caring.....

Physics Scholar
Physics Scholar
Articles: 16

Leave a Reply

Your email address will not be published. Required fields are marked *

Open chat
1
Scan the code
Chat with Physics Scholar
Hello 👋
Can we help you?
Our Best Quality Ongoing Courses: 

1) Srijan Batch (JSSC TGT - Physics & Maths) : Click Here

2) Vishvas Batch (UP PGT Physics) : Click Here

3) Vardhan Batch (UP TGT Science -Physics Part) : Click Here

4) Raftaar Batch (Bihar PGT Physics) : Click Here

5) Prayas Batch (CSIR NET/JET/CGSET/MPSET...) : Click Here